6.034

Problem Solving Strategies and Methods

Randall Davis (friend of Dr. K)

Major ideas

Knowledge is power

- What kind
- How much
- How represented
- How used
- What exactly do we need to know
\Downarrow Collect good ideas
$\stackrel{\wedge}{\wedge}$ The power of building models

Outline

- Task: Integration
- Examine the method
- Examine the knowledge
- Understand how SAINT, a program from 1960 worked. (1960!)
- Why failures are wonderful
- What do you need to know to be good at something?

The Task

$$
\int \frac{-5 x^{4}}{\left(1-x^{2}\right)^{5 / 2}} d x
$$

How Would You Approach It?
\qquad

How Do We Do It?
$-\int \frac{1}{x} d x=?$
$-\int x^{n} d x=$?
$-\int \cos x=$?

- and...

$$
\begin{aligned}
& \int \frac{-5 x^{4}}{\left(1-x^{2}\right)^{5 / 2}} \mathrm{dx} \Rightarrow-5 \int \frac{x^{4}}{\left(1-x^{2}\right)^{5 / 2}} \mathrm{dx} \underset{x=\sin (x)}{\Longrightarrow-5} \frac{\sin ^{4}(y)}{\cos ^{4}(y)} \mathrm{dy} \\
& \int \tan ^{4} y \mathrm{dy} \quad \int 1 / \cot ^{4} y \mathrm{dy} \quad \int 32 \int_{\left(1+z^{2}\right)\left(1-z^{2}\right)^{2}}^{d x} \\
& \text { Heur. B } \\
& \int \frac{d z}{z^{4}\left(1+z^{2}\right)} \\
& \text { Divide } \\
& \int\left(-1+z^{2}+\frac{1}{1+z^{2}}\right) d z \\
& -z+\frac{z^{3}}{3}+\frac{3^{2}}{1+z^{2}} \xrightarrow{\operatorname{try} \omega=\arctan z} \arcsin (x)-\tan (\arcsin (x))+\frac{1}{3} \tan (\arcsin (x))
\end{aligned}
$$

(Why) Is This Interesting?

- Notion of problem reduction
- Goal tree
- And-node, or-node

The Power of Naming Things

- (Folklore)
- Ancient Egypt, Jewish tradition, Rumplestiltskin
- (Literature)
- The Nine Billion Names of God, Clarke
- A Wizard of Earthsea, Le Guin
- ...
- Engineering
- Reify a vague notion into a concrete concept
- Call on it when and how you will.

Knowledge

- What kind
- Transforms
- Goal trees
- How represented
- Tables
- How used
- Xforms for problem reduction
- Tables for primitive problem solution

Knowledge

- How much
- 24 transforms
- 12 safe
- 12 heuristic

An Important Lesson

- The power of building models
- Especially executable models

The Mindset Of SAINT

- Worked like the average engineer, i.e., lots of search and backtracking
- Conceived of in terms of search, worked because of that. The power comes from:
- Problem decomposition
- Methodical exploration of alternatives
- Looking far, wide, and deep
- Speedy tree construction, search, backtracking
- Success is just a matter of trying enough alternatives

Some Stats \& An Inconvenient Truth

- Statistics

Max depth of tree: 7

- Average depth: ~ 3
- Unused branches: ~1
- How many rules on average applicable to an expression?
- 1
- In consequence of that truth: SIN
- We ...mainly desired a powerful integration program which behaved closely to our conception of expert human integrators.

