FOR FURTHER REFLECTION

1. Discuss Chalmers’s three arguments against reductive materialism. Does he defeat the thesis of a supervenience relationship between mental and physical states?
2. Explain Chalmers’s view on functional analysis of consciousness.

JOHN SEARLE

MINDS, BRAINS, AND COMPUTERS

John Searle is professor of philosophy at the University of California, Berkeley, and the author of several works in the philosophy of language and the philosophy of mind, including Intentionality (1983) and The Rediscovery of the Mind (1992). In this essay, Searle argues that although weak AI (artificial intelligence), which states that the mind functions somewhat like a computer, might be correct, strong AI, which states that the appropriately programmed computer is mind and has intentions, is false.

What psychological and philosophical significance should we attach to recent efforts at computer simulations of human cognitive capacities? In answering this question, I find it useful to distinguish what I will call “strong” AI from “weak” or “cautious” AI (artificial intelligence). According to weak AI, the principal value of the computer in the study of the mind is that it gives us a very powerful tool. For example, it enables us to formulate and test hypotheses in a more rigorous and precise fashion. But according to strong AI, the computer is not merely a tool in the study of the mind; rather, the appropriately programmed computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other cognitive states. In strong AI, because the programmed computer has cognitive states, the programs are not mere tools that enable us to test psychological explanations; rather, the programs are themselves the explanations.

I have no objection to the claims of weak AI, at least as far as this article is concerned. My discussion here will be directed at the claims I have defined as those of strong AI, specifically the claim that the appropriately programmed computer literally has cognitive states and that the programs thereby explain human cognition. When I hereafter refer to AI, I have

in mind the strong version, as expressed by these two claims.

I will consider the work of Roger Schank and his colleagues at Yale (Schank and Abelson 1977), because I am more familiar with it than I am with any other similar claims, and because it provides a very clear example of the sort of work I wish to examine. But nothing that follows depends upon the details of Schank’s programs. The same arguments would apply to Winograd’s SHRDLU (Winograd 1973), Weizenbaum’s ELIZA (Weizenbaum 1965), and indeed any Turing machine simulation of human mental phenomena.

Very briefly, and leaving out the various details, one can describe Schank’s program as follows: The aim of the program is to simulate the human ability to understand stories. It is characteristic of human beings’ story-understanding capacity that they can answer questions about the story even though the information that they give was never explicitly stated in the story. Thus, for example, suppose you are given the following story: “A man went into a restaurant and ordered a hamburger. When the hamburger arrived it was burned to a crisp, and the man stormed out of the restaurant angrily, without paying for the hamburger or leaving a tip.” Now, if you are asked “Did the man eat the hamburger?” you will presumably answer, “No, he did not.” Similarly, if you are given the following story: “A man went into a restaurant and ordered a hamburger; when the hamburger came he was very pleased with it; and as he left the restaurant he gave the waitress a large tip before paying his bill,” and you are asked the question, “Did the man eat the hamburger?” you will presumably answer, “Yes, he ate the hamburger.” Now Schank’s machines can similarly answer questions about restaurants in this fashion. To do this, they have a “representation” of the sort of information that human beings have about restaurants, which enables them to answer such questions as those above, given these sorts of stories. When the machine is given the story and then asked the question, the machine will print out answers of the sort that we would expect human beings to give if told similar stories. Partisans of strong AI claim that in this question and answer sequence the machine is not only simulating a human ability but also (1) that the machine can literally be said to understand the story and provide the answers to questions, and (2) that what the machine and its programs do explains the human ability to understand the story and answer questions about it.

Both claims seem to me to be totally unsupported by Schank’s work, as I will attempt to show in what follows. I am not, of course, saying that Schank himself is committed to these claims. One way to test any theory of the mind is to ask oneself what it would be like if my mind actually worked on the principles that the theory says all minds work on. Let us apply this test to the Schank program with the following thought experiment. Suppose that I’m locked in a room and given a large batch of Chinese writing. Suppose furthermore (as is indeed the case) that I know no Chinese, either written or spoken, and that I’m not even confident that I could recognize Chinese writing as Chinese writing distinct from, say, Japanese writing or meaningless squiggles. To me, Chinese writing is just so many meaningless squiggles. Now suppose further that after this first batch of Chinese writing I am given a second batch of Chinese script together with a set of rules for correlating the second batch with the first batch. The rules are in English, and I understand these rules as well as any other native speaker of English. They enable me to correlate one set of formal symbols with another set of formal symbols, and all that “formal” means here is that I can identify the symbols entirely by their shapes. Now suppose also that I am given a third batch of Chinese symbols together with some instructions, again in English, that enable me to correlate elements of this third batch with the first two batches, and these rules instruct me how to give back certain Chinese symbols with certain sorts of shapes in response to certain sorts of shapes given me in the third batch. Unknown to me, the people who are giving me all of these symbols call the first batch a “script,” they call the second batch a “story,” and they call the third batch “questions.” Furthermore, they call the symbols I give them back in response to the third batch “answers to the questions,” and the set of rules in English that they gave me, they call the “program.” Now just to complicate the story a little, imagine that these people also give me stories in English, which I understand, and they then ask me
questions in English about these stories, and I give
them back answers in English. Suppose also that after
a while, I get so good at following the instructions for
manipulating the Chinese symbols and the program-
ners get so good at writing the programs that from the
external point of view—that is, from the point of view
of somebody outside the room in which I am locked—
my answers to the questions are absolutely indistin-
guishable from those of native Chinese speakers.
Nobody just looking at my answers can tell that I
don’t speak a word of Chinese. Let us also suppose
that my answers to the English questions are, as they
no doubt would be, indistinguishable from those of
other native English speakers, for the simple reason
that I am a native English speaker. From the external
point of view—from the point of view of someone
reading my “answers”—the answers to the Chinese
questions and English questions are equally good. But
in the Chinese case, unlike the English case, I produce
the answers by manipulating uninterpreted formal
symbols. As far as the Chinese is concerned, I simply
behave like a computer; I perform computational
operations on formally specified elements. For the
purposes of the Chinese, I am simply an instantiation
of the computer program.

Now the claims made by strong AI are that the
programmed computer understands the stories and
that the program in some sense explains human under-
standing. But we are now in a position to examine
these claims in light of our thought experiment.

1. As regards the first claim, it seems to me quite
obvious in the example that I do not understand a
word of the Chinese stories. I have in-puts and outputs
that are indistinguishable from those of the native
Chinese speaker, and I can have any formal program
you like, but I still understand nothing. For the same
reasons, Schank’s computer understands nothing of
any stories, whether in Chinese, English, or whatever,
since in the Chinese case the computer is me, and in
cases where the computer is not me, the computer
has nothing more than I have in the case where I
understand nothing.

2. As regards the second claim, that the program
explains human understanding, we can see that the
computer and its program do not provide sufficient
conditions of understanding since the computer and
the program are functioning, and there is no under-
standing. But does it even provide a necessary condi-
tion or a significant contribution to understanding?
One of the claims made by the supporters of strong AI
is that when I understand a story in English, what I am
doing is exactly the same—or perhaps more of the
same—as what I was doing in manipulating the Chi-
inese symbols. It is simply more formal symbol
manipulation that distinguishes the case in English,
where I do understand, from the case in Chinese,
where I don’t. I have not demonstrated that this claim
is false, but it would certainly appear an incredible
claim in the example. Such plausibility as the claim
has derives from the supposition that we can con-
struct a program that will have the same inputs and
outputs as native speakers, and in addition we assume
that speakers have some level of description where
they are also instantiations of a program. On the basis
of these two assumptions we assume that even if
Schank’s program isn’t the whole story about under-
standing, it may be part of the story. Well, I suppose
that is an empirical possibility, but not the slightest
reason has so far been given to believe that it is true,
since what is suggested—though certainly not demon-
strated—by the example is that the computer program
is simply irrelevant to my understanding of the story.
In the Chinese case I have everything that artificial
intelligence can put into me by way of a program, and
I understand nothing; in the English case I understand
everything, and there is so far no reason at all to sup-
pose that my understanding has anything to do with
computer programs, that is, with computational oper-
ations on purely formally specified elements. As long
as the program is defined in terms of computational
operations on purely formally defined elements, what
the example suggests is that these by themselves have
no interesting connection with understanding. They
are certainly not sufficient conditions, and not the
slightest reason has been given to suppose that they
are necessary conditions or even that they make a sig-
nificant contribution to understanding. Notice that the
force of the argument is not simply that different
machines can have the same input and output while
operating on different formal principles—that is not
the point at all. Rather, whatever purely formal prin-
ciples you put into the computer, they will not be suf-
ficient for understanding, since a human will be able to follow the formal principles without understanding anything. No reason whatever has been offered to suppose that such principles are necessary or even contributory, since no reason has been given to suppose that when I understand English I am operating with any formal program at all.

Well, then, what is it that I have in the case of the English sentences that I do not have in the case of the Chinese sentences? The obvious answer is that I know what the former mean, while I haven’t the faintest idea what the latter mean. But in what does this consist and why couldn’t we give it to a machine, whatever it is? . . .

I have had the occasions to present this example to several workers in artificial intelligence, and, interestingly, they do not seem to agree on what the proper reply to it is. . . .

. . . I want to block some common misunderstandings about “understanding”: In many of these discussions one finds a lot of fancy footwork about the word “understanding.” My critics point out that there are many different degrees of understanding; that “understanding” is not a simple two-place predicate; that there are even different kinds and levels of understanding, and often the law of excluded middle doesn’t even apply in a straightforward way to statements of the form “x understands y”; that in many cases it is a matter for decision and not a simple matter of fact whether x understands y, and so on. To all of these points I want to say: of course, of course. But they have nothing to do with the points at issue. There are clear cases in which “understanding” literally applies and clear cases in which it does not apply; and these two sorts of cases are all I need for this argument. I understand stories in English; to a lesser degree I can understand stories in French; to a still lesser degree, stories in German; and in Chinese, not at all. My car and my adding machine, on the other hand, understand nothing: they are not in that line of business.¹

We often attribute “understanding” and other cognitive predicates by metaphor and analogy to cars, adding machines, and other artifacts, but nothing is proved by such attributions. We say, “The door knows when to open because of its photoelectric cell,” “The adding machine knows how (understands how, is able) to do addition and subtraction but not division,” and “The thermostat perceives changes in the temperature.” The reason we make these attributions is quite interesting, and it has to do with the fact that in artifacts we extend our own intentionality;² our tools are extensions of our purposes, and so we find it natural to make metaphorical attributions of intentionality to them; but I take it no philosophical ice is cut by such examples. The sense in which an automatic door “understands instructions” from its photoelectric cell is not at all the sense in which I understand English. If the sense in which Schank’s programmed computers understand stories is supposed to be the metaphorical sense in which the door understands, and not the sense in which I understand English, the issue would not be worth discussing. But Newell and Simon (1963) write that the kind of cognition they claim for computers is exactly the same as for human beings. I like the straightforwardness of this claim, and it is the sort of claim I will be considering. I will argue that in the literal sense the programmed computer understands what the car and the adding machine understand, namely, exactly nothing. The computer’s understanding is not just (like my understanding of German) partial or incomplete; it is zero. . . .

By way of concluding I want to try to state some of the general philosophical points implicit in the argument. For clarity I will try to do it in a question-and-answer fashion, and begin with that old chestnut of a question:

“Could a machine think?”

The answer is, obviously, yes. We are precisely such machines.

“Yes, but could an artificial, a man-made machine, think?”

Assuming it is possible to produce artificially a machine with a nervous system, neurons, with axons and dendrites, and all the rest of it, sufficiently like ours, again the answer to the question seems to be obviously, yes. If you can exactly duplicate the causes, you could duplicate the effects. And indeed it might be possible to produce consciousness, intentionality, and all the rest of it using some other sorts of chemical principles than those that human beings use. It is, as I said, an empirical question.

“OK, but could a digital-computer think?”
If by “digital computer” we mean anything at all that has a level of description where it can correctly be described as the instantiation of a computer program, then again the answer is, of course, yes, since we are the instantiations of any number of computer programs, and we can think.

“But could something think, understand, and so on solely by virtue of being a computer with the right sort of program? Could instantiating a program, the right program of course, by itself be a sufficient condition of understanding?” This I think is the right question to ask, though it is usually confused with one or more of the earlier questions, and the answer to it is no.

“Why not?”

Because the formal symbol manipulations by themselves don’t have any intentionality; they are quite meaningless; they aren’t even symbol manipulations, since the symbols don’t symbolize anything. In the linguistic jargon, they have only a syntax but no semantics. Such intentionality as computers appear to have is solely in the minds of those who program them and those who use them, those who send in the input and those who interpret the output.

The aim of the Chinese room example was to try to show this by showing that as soon as we put something into the system that really does have intentionality (a man), and we program him with the formal program, you can see that the formal program carries no additional intentionality. It adds nothing, for example, to a man’s ability to understand Chinese.

Precisely that feature of AI that seemed so appealing—the distinction between the program and the realization—proves fatal to the claim that simulation could be duplication. The distinction between the program and its realization in the hardware seems to be parallel to the distinction between the level of mental operations and the level of brain operations. And if we could describe the level of mental operations as a formal program, then it seems we could describe what was essential about the mind without doing either introspective psychology or neurophysiology of the brain. But the equation “mind is to brain as program is to hardware” breaks down at several points, among them the following three:

First, the distinction between program and realization has the consequence that the same program could have all sorts of crazy realizations that had no form of intentionality. Weizenbaum (1976, Ch. 2), for example, shows in detail how to construct a computer using a roll of toilet paper and a pile of small stones. Similarly, the Chinese story understanding-program can be programmed into a sequence of water pipes, a set of wind machines, or a monolingual English speaker, none of which thereby acquires an understanding of Chinese. Stones, toilet paper, wind, and water pipes are the wrong kind of stuff to have intentionality in the first place—only something that has the same causal powers as brains can have intentionality—and though the English speaker has the right kind of stuff for intentionality you can easily see that he doesn’t get any extra intentionality by memorizing the program, since memorizing it won’t teach him Chinese.

Second, the program is purely formal, but the intentional states are not in that way formal. They are defined in terms of their content, not their form. The belief that it is raining, for example, is not defined as a certain formal shape, but as a certain mental content with conditions of satisfaction, a direction of fit (see Searle 1979), and the like. Indeed the belief as such hasn’t even got a formal shape in this syntactic sense, since one and the same belief can be given an indefinite number of different syntactic expressions in different linguistic systems.

Third, as I mentioned before, mental states and events are literally a product of the operation of the brain, but the program is not in that way a product of the computer.

“Well if programs are in no way constitutive of mental processes, why have so many people believed the converse? That at least needs some explanation.”

I don’t really know the answer to that one. The idea that computer simulations could be the real thing ought to have seemed suspicious in the first place because the computer isn’t confined to simulating mental operations, by any means. No one supposes that computer simulations of a five-alarm fire will burn the neighborhood down or that a computer simulation of a rainstorm will leave us all drenched. Why on earth would anyone suppose that a computer simulation of understanding actually understood anything? It is sometimes said that it would be frightfully
hard to get computers to feel pain or fall in love, but
love and pain are neither harder nor easier than cogni-
tion or anything else. For simulation, all you need
is the right input and output and a program in the
middle that transforms the former into the latter. That
is all the computer has for anything it does. To con-
fuse simulation with duplication is the same mistake,
whether it is pain, love, cognition, fires, or rainstorms.

Still, there are several reasons why AI must have
seemed—and to many people perhaps still does seem—in some way to reproduce and thereby explain
mental phenomena, and I believe we will not succeed
in removing these illusions until we have fully
exposed the reasons that give rise to them.

First, and perhaps most important, is a confusion
about the notion of “information processing”: Many
people in cognitive science believe that the human
brain, with its mind, does something called “infor-
mation processing,” and analogously the computer
with its program does information processing; but
fires and rainstorms, on the other hand, don’t do in-
formation processing at all. Thus, though the computer
can simulate the formal features of any process what-
ever, it stands in a special relation to the mind and
brain because when the computer is properly pro-
grammed, ideally with the same program as the brain,
the information processing is identical in the two
cases, and this information processing is really the
essence of the mental. But the trouble with this argu-
ment is that it rests on an ambiguity in the notion of
“information.” In the sense in which people “process
information” when they reflect, say, on problems in
arithmetic or when they read and answer questions
about stories, the programmed computer does not do
“information processing.” Rather, what it does is
manipulate formal symbols. The fact that the pro-
grammer and the interpreter of the computer output
use the symbols to stand for objects in the world is
totally beyond the scope of the computer. The com-
puter, to repeat, has a syntax but no semantics. Thus,
if you type into the computer “2 plus 2 equals?” it will
type out “4.” But it has no idea that “4” means 4 or
that it means anything at all. And the point is not that
it lacks some second-order information about the
interpretation of its first-order symbols, but rather that
its first-order symbols don’t have any interpretations
as far as the computer is concerned. All the computer
has is more symbols. The introduction of the notion of “information processing” therefore produces a
dilemma: Either we construe the notion of “informa-
tion processing” in such a way that it implies inten-
tionality as part of the process or we don’t. If the
former, then the programmed computer does not do
information processing: it only manipulates formal
symbols. If the latter, then, though the computer
does information processing, it is only doing so in the
sense in which adding machines, typewriters, stom-
achs, thermostats, rainstorms, and hurricanes do infor-
mation processing; namely, they have a level of
description at which we can describe them as taking
information in at one end, transforming it, and pro-
ducing information as output. But in this case it is up
to outside observers to interpret the input and output
as information in the ordinary sense. And no similar-
ity is established between the computer and the brain
in terms of any similarity of information processing.

Second, in much of AI there is a residual behavior-
ism or operationalism. Since appropriately pro-
grammed computers can have input-output patterns
similar to those of human beings, we are tempted to
postulate mental states in the computer similar to
human mental states. But once we see that it is both
conceptually and empirically possible for a system to
have human capacities in some realm without having
any intentionality at all, we should be able to overcome
this impulse. My desk adding machine has calculating
capacities, but no intentionality, and in this paper I
have tried to show that a system could have input and
output capabilities that duplicated those of a native
Chinese speaker and still not understand Chinese,
regardless of how it was programmed. The Turing test
is typical of the tradition in being unashamedly behav-
ioristic and operationalistic, and I believe that if AI
workers totally repudiated behaviorism and opera-
tionalism, much of the confusion between simulation
and duplication would be eliminated.

Third, this residual operationalism is joined to a
residual form of dualism; indeed strong AI only makes
sense given the dualistic assumption that, where the
mind is concerned, the brain doesn’t matter. In strong
AI (and in functionalism, as well) what matters are
programs, and programs are independent of their real-
ization in machines; indeed, as far as AI is concerned, the same program could be realized by an electronic machine, a Cartesian mental substance, or a Hegelian world spirit. The single most surprising discovery that I have made in discussing these issues is that many AI workers are quite shocked by my idea that actual human mental phenomena might be dependent on actual physical-chemical properties of actual human brains. But if you think about it a minute you can see that I should not have been surprised; for unless you accept some form of dualism, the strong AI project hasn’t got a chance. The project is to reproduce and explain the mental by designing programs, but unless the mind is not only conceptually but empirically independent of the brain you couldn’t carry out the project, for the program is completely independent of any realization. Unless you believe that the mind is separable from the brain both conceptually and empirically — dualism in a strong form — you cannot hope to reproduce the mental by writing and running programs since programs must be independent of brains or any other particular forms of instantiation. If mental operations consist in computational operations on formal symbols, then it follows that they have no interesting connection with the brain; the only connection would be that the brain just happens to be one of the indefinitely many types of machines capable of instantiating the program. This form of dualism is not the traditional Cartesian variety that claims there are two sorts of substances, but it is Cartesian in the sense that it insists that what is specifically mental about the mind has no intrinsic connection with the actual properties of the brain. This underlying dualism is masked from us by the fact that AI literature contains frequent fulminations against “dualism”; what the authors seem to be unaware of is that their position presupposes a strong version of dualism.

“Could a machine think?” My own view is that only a machine could think, and indeed only very special kinds of machines, namely brains and machines that had the same causal powers as brains. And that is the main reason strong AI has had little to tell us about thinking, since it has nothing to tell us about machines. By its own definition, it is about programs, and programs are not machines. Whatever else intentionality is, it is a biological phenomenon, and it is as likely to be as causally dependent on the specific biochemistry of its origins as lactation, photosynthesis, or any other biological phenomena. No one would suppose that we could produce milk and sugar by running a computer simulation of the formal sequences in lactation and photosynthesis, but where the mind is concerned many people are willing to believe in such a miracle because of a deep and abiding dualism: The mind they suppose is a matter of formal processes and is independent of quite specific material causes in the way that milk and sugar are not.

In defense of this dualism the hope is often expressed that the brain is a digital computer (early computers, by the way, were often called “electronic brains”). But that is no help. Of course the brain is a digital computer. Since everything is a digital computer, brains are too. The point is that the brain’s causal capacity to produce intentionality cannot consist in its instantiating a computer program, since for any program you like it is possible for something to instantiate that program and still not have any mental states. Whatever it is that the brain does to produce intentionality, it cannot consist in instantiating a program since no program, by itself, is sufficient for intentionality.

REFERENCES
NOTES

1. Also, "understanding" implies both the possession of mental (intentional) states and the truth (validity, success) of these states. For the purposes of this discussion we are concerned only with the possession of the states.

2. Intentionality is by definition that feature of certain mental states by which they are directed at or about objects and states of affairs in the world. Thus, beliefs, desires, and intentions are intentional states; undirected forms of anxiety and depression are not.

FOR FURTHER REFLECTION

1. Evaluate Searle's argument against strong AI. Can you see any weaknesses in it? How might a proponent of strong AI defend his or her position?

2. Suppose we could devise a robot with a television camera inside enabling it to see and a voice machine to utter meaningful sentences in response to its environmental input. Would this be an advance on the Schank program that would meet Searle's objections?

3. Here is one reply of an AI proponent discussed in Searle's original essay:

Your whole argument presupposes that AI is only about analog and digital computers. But that just happens to be the present state of technology. Whatever these causal processes are that you say are essential for intentionality, eventually we will be able to build devices that have these causal processes, and that will be artificial intelligence. So your arguments are in no way directed at the ability of artificial intelligence to produce and explain cognition (The Many Mansions Reply [Berkeley]).

Evaluate this response. Does it show that artificial intelligence could eventually become conscious, have intentional states, and understand language?

B. THE PROBLEM OF PERSONAL IDENTITY

Suppose you wake up tomorrow in a strange room. There are pictures of unfamiliar people on the light blue walls. The furniture in the room is very odd. You wonder how you got here. You remember being in the hospital, where you were dying of cancer. Your body was wasting away, and your death was thought to be a few days away. Dr. Jekyll had kindly given you an extra dose of morphine to kill the pain. That's all you can remember. You notice a calendar on the wall in front of you. The date is January 1, 2000. "This can't be," you think, "for yesterday was December 2, 1999." "Where have I been all this time?" Suddenly, you see a mirror. You reel back, for it's not your body that you spy in the glass, but a slim, pale, freckled woman's body. You have blue eyes and look years older. You feel tired and confused and frightened, and you start to cry. Soon a strange man comes into your room. "I was wondering when you'd wake up, Maria. The doctor said that I should let you sleep as long as possible, but I didn't think that you would sleep for two whole days! Anyway, the operation was a success! We were afraid the accident had ended your life. The children will be so happy to see you awake. How do you feel?"

"Can this be a bad joke?" you wonder. "Who is this strange man, and who am I?" Unbeknownst to "you," your physician, Dr. Jekyll, needed a living brain to implant in the head of Maria Ganz, mother of four children. She had been in a car accident and arrived at the hospital on a ventilator but brain dead. Your brain was in excellent shape but lacked a