


satisfied. For example, figure 2 shows the probability that there is a raccoon present, given
that the dog barks.

Figure 2: You can use a joint probability table to calculate conditional probabilies, such as the
probability that a dog barks given that a racoon is present.

Unfortunately, the size of the table grows exponentially, so often there are too many
probabilities to extract from frequency data or to estimate subjectively. You have to find
another way that takes you through the axioms of probability, the definition of conditional
probability, and the idea of independence.

The Axioms of Probability

The axioms of probability make sense intuitively given the capacity to draw Venn diagrams
filled with a colored-pencil crosshatching. The first axiom states that probabilities are always
equal to or greater than zero and less than or equal to one:

0 ≤ P (a) ≤ 1.0

Another axiom captures the idea that certainty means a probability of one; impossible,
zero:

P (F ) = 0.0 P (T ) = 1.0

Finally, you have an axiom relating the either (∨) to the both (∧);

P (a ∨ b) = P (a) + P (b)− P (a ∧ b)
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Conjunction is generally indicated by a comma, rather than ∧:

P (a, b) = Pa ∧ b

Conditional Probability and the Chain Rule

Conditional probability is defined thusly:

P (a|b) ≡ P (a, b)

P (b)

In English, the probability of a given that b is true equals by definition the probability
of a and b divided by the probability of b.

Intuitively, this is the probability of a in the restricted universe where b is true. Again,
you can help your intuition to engage by deploying a colored pencil.

Of course you can multiply to get another form of the same definition:

P (a, b) = P (a|b)P (b)

Given the multiplied-out form, note that, by thinking of z as a variable that restricts the
universe, you have:

P (a, b, z) = P (a|b, z)P (b, z)

But then, you can work on this expression a little more using the multiplied-out form of
the definition of conditional probability on P (b, z), which yields:

P (a, b, z) = P (a|b, z)P (b|z)P (z)

Once you see this pattern, you can generalize to the chain rule:

P (xn), ...P (x1) = Πi=1
i=nP (xi|xi−1, ..., x1) = P (xn|xn−1, ..., x1)P (xn−1|xn−2, ..., x1)× ...×P (x1)

The Definition of Independence

The variable a is said, by definition, to be independent of b if:

P (a|b) = P (a)

Thus, independence ensures that the probability of a in the restricted universe where b
is true is the same as the probability of a in the unrestricted universe.

Next, you generalize independence to conditional independence, and define a to be inde-
pendent of b given z:

P (a|b, z) ≡ P (a|z)

And then, given the definition, it follows that
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P (a, b|z) =
P (a, b, z)

P (z)

=
P (a|b, z)P (b|z)P (z)

P (z)

= P (a|z)P (b|z)

Inference Nets

An inference net is a loop-free diagram that provides a convenient way to assert independence
conditions. They often, but not always, reflect causal pathways. An example is shown in
figure 3.

Figure 3: An inference net.

When you draw such a net, you suggest that the influences on a variable all flow through
the variable’s parents, thus enabling the following to be said: Each variable in an inference
net is independent of all nondescendant variables, given the variable’s parents.

Note that the burglar and raccoon each appear with probabilities that do not depend
on anything else, but the dog barks with differing probabilities depending on whether the
burglar or the raccoon or both or neither are present.

The probabilities and conditional probabilities in the diagram are determined using the
data to provide frequencies for all the possibilities, just as when creating the joint probability
table.
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Using the inference net, there are far fewer numbers to determine with frequency data
or to invent subjectively. Here, there are just 10 instead of 25 = 32 numbers to make up. In
general, if there are n variables, and no variable depends on more than pmax parents, then
you are talking about n2pmax rather than 2n, a huge, exponential difference.

Generating a Joint Probability Table

Is the inference net enough to do calculation? You know that the joint probability table is
enough, so it follows, via the chain rule, that an inference net is enough, because you can
generate the rows in the joint probability table from the corresponding inference net.

To see why, note that, because inference nets have no loops, each inference net must have
a variable without any descendants. Pick such a variable to be first in an ordering of the
variables. Then, delete that variable from the diagram and pick another. There will always
be one with no still-around descendents until you have constructed a complete ordering. No
variable in your list can have any descendents to its right; the descendents, by virtue of how
you constructed the list, are all to the left.

Next, you use the chain rule to write out the probability of any row in the joint probability
table in terms of the variables in your inference net, ordered as you have just laid them out.

For example, you can order the variables in the evolving example by chewing away at
the variables without still-around descendants, producing, say, C, D, B, T, R. Then, using
the chain rule, you produce the following equation:

P (C,D,B, T,R) = P (C|D,B, T,R)P (D|B, T,R)P (B|T,R)P (T |R)P (R)

With this ordering, all the conditional dependencies are on non descendants. Then,
knowing that the variables are independent of all non descendants given their parents, we
can strike out a lot of the apparent dependencies, leaving only dependencies on parents:

P (C,D,B, T,R) = P (C|D)P (D|B,R)P (B)P (T |R)P (R)

Thus, it is easy to get the probability of any row in the joint probability table; thus, it is
easy to construct the table; thus, anything you need to infer can be inferred via the inference
net.

You need not actually create the full joint probability table, but it is comforting to know
that you can, in principle. You don want to, in practice, because there are ways of performing
your inference calculations that are more efficient, especially if your net has at most one path
from any variable to any other.

Naive Bayes Inference

Now, it is time to revisit the definition of conditional probability and take a walk on a path
that will soon come back to inference nets. By symmetry, note that there are two ways to
recast P (a, b):
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P (a, b) = P (a|b)P (b)

P (a, b) = P (b|a)P (a)

This leads to the famous Bayes rule:

P (a|b) =
P (b|a)P (a)

P |b)
Now, suppose you are interested in classifying the cause of some observed evidence. You

use Bayes rule to turn the probability of a class, ci, given evidence into the probability of
the evidence given the class, ci:

P (ci|e) =
P (e|ci)P (ci)

P (e)

Then, if the evidence consists of a variety of independent observations, you can write the
naive Bayes classifier, so called because the independence assumption is often unjustified:

P (ci|e1, ...en) =
P (e1|ci)× ...× P (en|ci)× P (ci)

P (e)

Of course, if you are trying to pick a class from a set of possibilities, the denominator is
the same for each, so you can just conclude that the most likely class generating the evidence
is the one producing the biggest numerator.

Using the naive Bayes classification idea, you can go after many diagnosis problems, from
medical diagnosis to understanding what is wrong with your car.

Model selection

Using the naive Bayes idea, you can also search for the best model given some data. Consider
again the inference net we have been working with. Suppose a friend complains you have it
wrong, and the correct model is the one on the right in figure 4, not the one on the left:

No problem. You only need use your data to fill in the probabilities, then think of the
probabilities of each data element for each classes. Assuming both models are equally likely,
all you need do, for each class, is multiply out the probabilities, in the manner indicated by
naive Bayes. The bigger product indicates the winning class.

Structure search

Next, you develop a program for perturbing inference nets, construct a search program,
and look for the structure that is most probable. You should prepare for some work and
frustration, however, as a simple search is unlikely to work very well. The space is large and
full of local maxima and the potential to models that overfit. You will need random restart
and a way to favor fewer connections over more connections, which you can think of as a
special case of Occam’s razor.
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Figure 4: A model-selection example.
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