
6.034  
Bayes Networks

Peter Szolovits

November 13, 2019

ai6034.mit.edu

Graphical Probabilistic
Models

Graphical Models Show Dependencies

Burglar Racoon

Dog Barks

Disease

Symptom 1 Symptom 2 Symptom k…

Consider More Complex Barking Story

Burglar Racoon

Dog Barks

Police

Trash Can

Mantra:
Every node is independent of nodes
other than its parents and its
descendants.

Probabilities
Burglar Racoon

Dog Barks

Police

Trash Can

P(B)
0.1

P(R)
0.5

B R P(D)
F F 0.1
F T 0.5
T F 1.0
T T 1.0

D P(P)
F 0.001
T 0.1

R P(T)
F 0.001
T 0.8

Bayes Network Allows
Reconstruction of Probability Tables

•
by the chain rule

• But by conditional independence in the
graph,  

 

•  

where gives the parents of a node

P(p, d, b, t, r) = P(p |d, b, t, r)P(d |b, t, r)P(b | t, r)P(t |r)P(r)

P(p, d, b, t, r) = P(p |d, b, t, r)P(d |b, t, r)P(b | t, r)P(t |r)P(r)
= P(p |d)P(d |b, r)P(b)P(t |r)P(r)

P(x1, …, xn) =
1

∏
i=n

P(xi |Par(xi))

Par

B R

D

P

T

Topological Interpretations

X

Y1 Yn

UnU1

Z1 Zn

A node, X, is conditionally independent of 
its non-descendants, Zi, given its parents, Ui.

X

Y1 Yn

UnU1

Z1 Zn

A node, X, is conditionally independent of all other  
nodes in the network given its Markov blanket:  
its parents, Ui, children, Yi, and children’s parents,  
Zi.

A Very Large Bayes Net
 David Heckerman, Pathfinder/Intellipath, around 1990

How (not) to do Inference
• So, we can reconstruct the probability of any particular scenario
• But, normally we want to know the probabilities of some nodes given

that we have observed some others
• E.g., what is the probability of a burglar given that the police

were called and the trash can was not knocked over?

• By abuse of notation, we write a variable to represent whatever its
value is, and if its value is known to be T or F (binary case)

•  

• Downside: exponential number of terms in the “don’t care” variables

x
x+, x−

P(b+ |p+, t−) =
P(b+, p+, t−)

P(b+, t−)
∑d,r P(p+, d, b+, t−, r)

∑b,d,r P(p+, d, b, t−, r)

For Poly-Trees, simple propagation

• Suppose we observe B
• Reduce c.p. table of its children (D) to

the B=T or B=F cases
• Propagate

• Suppose we observe P
• Use Bayes’ Rule to update D
• Propagate

• Suppose we observe D
• Do both of the above

• Because everything is singly connected, one
pass updates all probabilities

• Much more complex if the network is multiply
connected! Propagation doesn’t work.

B R

D

P

T

B R

D

P

T

Rules and Probabilities

• Many have wanted to put a probability on assertions and
on rules, and compute with likelihoods

• E.g., Mycin’s certainty factor framework
– A (p=.3) & B (p=.7) ==(p=.8)==> C (p=?)

• Problems:
– How to combine uncertainties of preconditions and of

rule
– How to combine evidence from multiple rules

• Theorem: There is NO such algebra that works when
rules are considered independently.

• Need BN for a consistent model of probabilistic inference

Exact Solution of BN’s
(non-poly-trees)

•
• What is the probability of a specific state, say A=T, B=F,

C=T, D=T, E=F?  

• What is the probability that E=t given B=t?  

• Consider the term  
 

 

• 12 instead of 32 multiplications (even in this small example)

P(a, b, c, d, e) = P(a)P(b |a)P(c |a)P(d |b, c)P(e |c)

P(a+, b−, c+, d+, d−) = P(a+)P(b− |a+)P(c+ |a+)P(d+ |b−, a+)P(e− |c+)

P(e+ |b+) = P(e+, b+)/P(b+)
P(e+, b+)

P(e+, b+) = ∑
a,c,d

P(a, b+, c, d, e+)

= ∑
a,c,d

P(a)P(b+ |a)P(c |a)P(D |b+, c)P(e+ |c)

= ∑
c

P(e+ |c)(∑
a

P(a)P(c |a)P(b+ |a)) (∑
d

P(d, b+ |c))

A

B

D

C

E

Alas, optimal
factoring is NP-hard

Other Exact Methods

• Join-tree: Merge variables into (small!) sets of variables to make graph
into a poly-tree. Most commonly-used; aka Clustering, Junction-tree,
Potential)

• Cutset-conditioning: Instantiate a (small!) set of variables, then solve
each residual problem, and add solutions weighted by probabilities of
the instantiated variables having those values

• ...
• All these methods are essentially equivalent; with some time-space

tradeoffs.

A

B

D

C

E

A

D

B,C

E

We don’t want to model high-arity
dependence

•
• too many probabilities needed in conditional probability table

• Can we simplify?
– Noisy or
– noisy and
– noisy max/min
– ?

p(c |a1, a2, …)

a1 …a2 a3 a4 an

c

Simplifying Conditional Probability
Tables via Noisy-OR

• Do we know any structure in the way that “cause” ?

• If each destroyer can sink the ship with probability , what is the probability
that the ship will sink if it’s attacked by both?  

• For , this requires parameters, not

Par(x) x
P(s |di)

1 − P(s |d1, d2) = (1 − P(s |d1))(1 − P(s |d2))(1 − l)
|Par(x)| = n O(n) O(kn)

Sampling Methods to
Evaluate Bayes

Networks

Following  
Russel & Norvig

Approximate Inference in BN’s

• Direct Sampling
• Rejection Sampling
• Likelihood Weighting
• Markov chain Monte Carlo

– Gibbs and other similar sampling
methods

Direct Sampling

• From a large number of samples, we can estimate all joint
probabilities

– The probability of an event is the fraction of all complete
events generated by PS that match the partially specified event

• hence we can compute all conditionals, etc.

function Prior-Sample(bn) returns an event sampled from bn  
 inputs: bn, a Bayes net specifying the joint distribution P(X1, ... Xn)
 x := an event with n elements
 for i = 1 to n do
 xi := a random sample from P(Xi|Par(Xi))
 return x

Rejection Sampling

• Uses PriorSample to estimate the proportion of times each
value of X appears in samples that are consistent with e

• But, most samples may be irrelevant to a specific query, so
this is quite inefficient

function Rejection-Sample(X, e, bn, N) returns an estimate of P(X|e)  
 inputs: bn, a Bayes net

 X, the query variable
 e, evidence specified as an event
 N, the number of samples to be generated

local: K, a vector of counts over values of X, initially 0

 for j = 1 to N do
 y := PriorSample(bn)
 if y is consistent with e then
 K[v] := K[v]+1 where v is the value of X in y
 return Normalize(K[X])

Likelihood Weighting
• In trying to compute P(X|e), where e is the

evidence (variables with known, observed
values),
– Sample only the variables other than

those in e
– Weight each sample by how well it

predicts e

Likelihood
Weighting
function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)  
 inputs: bn, a Bayes net

 X, the query variable
 e, evidence specified as an event
 N, the number of samples to be generated

local: W, a vector of weighted counts over values of X, initially 0
 for j = 1 to N do
 y,w := WeightedSample(bn)
 if y is consistent with e then
 W[v] := W[v]+w where v is the value of X in y
 return Normalize(W[X])

function Weighted-Sample(bn,e) returns an event and a weight
 x := an event with n elements; w := 1
 for i = 1 to n do
 if Xi has a value xi in e
 then w := w * P(Xi = xi | Par(Xi))
 else xi := a random sample from P(Xi | Par(Xi))
 return x,w

Markov chain
Monte Carlo

• Wander incrementally from the last state sampled, instead of re-generating a
completely new sample

• For every unobserved variable, choose a new value according to its probability given
the values of vars in it Markov blanket (remember, it’s independent of all other vars)

• After each change, tally the sample for its value of X; this will only change
sometimes

• Problem: “narrow passages”

function MCMC(X, e, bn, N) returns an estimate of P(X|e)
local: K[X], a vector of counts over values of X, initially 0

Z, the non-evidence variables in bn (includes X)
x, the current state of the network, initially a copy of e

 initialize x with random values for the vars in Z
 for j = 1 to N do

for each Zi in Z do
sample the value of Zi in x from P(Zi|mb(Zi)), given the values of mb(Zi) in x
K[v] := K[v]+1 where v is the value of X in x

 return Normalize(K[X])

X

Y1 Yn

UnU1

Z1 Zn

Learning Probabilistic Models:
A Simple Example

• Surprise Candy Corp. makes two flavors of candy: cherry and lime

• Both flavors come in the same opaque wrapper

• Candy is sold in large bags, which have one of the following
distributions of flavors, but are visually indistinguishable:

• h1: 100% cherry

• h2: 75% cherry, 25% lime

• h3: 50% cherry, 50% lime

• h4: 25% cherry, 75% lime

• h5: 100% lime

• Relative prevalence of these types of bags is (.1, .2, .4, .2, .1)

• As we eat our way through a bag of candy, predict the flavor of
the next piece; actually a probability distribution.

Bayesian Learning about a Fixed
Simple Set of Hypotheses

• Calculate the probability of each hypothesis given the data 

• To predict the probability distribution over an unknown
quantity, ,  

• If the observations are independent, then  

• E.g., suppose the first 10 candies we taste are all lime 

P(hi |d) = αP(d |hi)P(hi)

X
P(X |d) = ∑

i

P(X |d, hi)P(hi |d) = ∑
i

P(X |hi)P(hi |d)

d
P(d |hi) = ∏

j

P(dj |hi)

P(d |h3) = 0.510 ≈ 0.001

Learning Hypotheses
and Predicting from Them

• (a) probabilities of hi after k lime candies; (b) prob. of next lime

• MAP prediction: predict just from most probable hypothesis
– After 3 limes, h5 is most probable, hence we predict lime
– Even though, by (b), it’s only 80% probable

Observations
• Bayesian approach asks for prior probabilities on hypotheses!

– Natural way to encode bias against complex hypotheses: make
their prior probability very low

• Choosing to maximize

– is equivalent to minimizing
– but from our earlier discussion of entropy as a measure of

information, these two terms are
• # of bits needed to describe the data given hypothesis
• # bits needed to specify the hypothesis

– Thus, MAP learning chooses the hypothesis that maximizes
compression of the data; Minimum Description Length principle

• Assuming uniform priors on hypotheses makes MAP yield , the
maximum likelihood hypothesis, which maximizes

hMAP P(hi |d) = αP(d |hi)P(hi)
−log P(d |hi) − log P(hi)

hML

P(hi |d) = αP(d |hi)

How to Build a Bayes Network
• Human expertise

• E.g., like building the Acute Renal Failure program, Pathfinder,
Alarm, …

• Human expertise to determine structure, data to determine
parameters

• Point parameter estimation
• Smoothing
• Useful distributions:

• Common: Beta (binomial), Dirichlet (multinomial)
• Any of the “exponential family”, e.g., normal, Poisson,

Gamma, etc.
• Automated methods to discover structure and parameters

• “Best” model is the one that predicts the highest probability for
the data actually observed.

Learning Structure

• In general, we are trying to determine
not only parameters for a known
structure but in fact which structure is
best
– or the probability of each structure,

so we can average over them to make
a prediction

Structure Learning
• Recall that a Bayes Network is fully specified by

– a DAG G that gives the (in)dependencies among variables
– the collection of parameters θ that define the conditional probability

tables for each of the

• Then

• We define the Bayesian score as  

• But
– First term: usual marginal likelihood calculation
– Second term: parameter priors
– Third term: “penalty” for complexity of graph

• Define a search problem over all possible graphs & parameters

P(xi |Par(xi))

P(G |D) =
P(D |G)P(G)

P(D)
∝ P(D |G)P(G)

log P(D |G) + log(P(G))
P(D |G) = ∫θG

P(D |θG, G)P(θg |G)P(G)dθG

Searching for Models
• How many possible DAGs are there for n variables?

– = all possible directed graphs on n vars
– Not all are DAGs

• To get a closer estimate, imagine that we order the variables so that the parents of each
var come before it in the ordering. Then

– there are possible ordering, and
– the i-th var can have any of the previous vars as a parent  

• If we can choose a particular ordering, say based on prior knowledge, then we need
consider “merely” models

• If we restrict |Par(X)| to no more than k, consider models

• this is actually practical
• Search actions: add, delete, reverse an arc
• Hill-climb on P(D|G) or on P(G|D)
• All “usual” tricks in search: simulated annealing, random restart, ...

< 3n2

n!

n!
n

∏
i=1

2i−1 = n! ⋅ 2∑n
i=1 (i−1) = O(n! ⋅ 2n2)

O(2n2)

≤
n

∑
i=1

(n
k)

X Y

X Y

X Y

1 2.000000e+00
2 3.200000e+01
3 3.072000e+03
4 1.572864e+06
5 4.026532e+09
6 4.947802e+13
7 2.837268e+18
8 7.437727e+23
9 8.773900e+29
10 4.600050e+36
11 1.061171e+44
12 1.068209e+52
13 4.659610e+60
14 8.755632e+69
15 7.050966e+79

Re-Learning the
ALARM Network

from 10,000
Samples Original Network

Sampled Data

Learned Network

Starting Network 
Complete independence

Caution about Hidden Variables 
(Confounders)

• Suppose you are given a dataset containing data on patients’
smoking, diet, exercise, chest pain, fatigue, and shortness of
breath

• You would probably learn a model like the one below left
• If you can hypothesize a “hidden” variable (not in the data set),

e.g., heart disease, the learned network might be much
simpler, such as the one below right

• But, there are potentially infinitely many such variables

S D E

C F B

S D E

C F B

H

