6.034
Bayes Networks
Peter Szolovits

ai6034.mit.edu

November 13, 2019

Graphical Probabilistic
Models

Graphical Models Show Dependencies

Dog Barks

Disease

Consider More Complex Barking Story

Mantra:

Every node is independent of nodes
other than its parents and its

descendants.

Probabilities

Bayes Network Allows
Reconstruction of Probability Tables

* P(p,d,b,t,r)=P(pl|d,b,t,r)P(d|b,t,r)P(b|t, r)P(t|r)P(r)
by the chain rule

» But by conditional independence in the
graph,
P(p.d,b,t,r) = P(p|d,¥,1,/)P(d|b,1,r)P(b|1,7)P(t| r)P(r)
= P(p|d)P(d|b, r)P(b)P(t| r)P(r)

1
. Py x) = [[P@lPay) 20 Cr o
i=n
where Par gives the parents of a node o @

Topological Interpretations

/\ 7 /5\ v
e AR

A node, X, is conditionally independent of A node, X, is conditionally independent of all other
its non-descendants, Z;, given its parents, Ui. nodes in the network given its Markov blanket:

its parents, U;, children,Y;, and children’s parents,
Z.

A Very Large Bayes Net

David Heckerman, Pathfinder/Intellipath, around 1990

ooy 4‘/;‘| L/ !
NG m : .unuunr)
@ NN mm)

R

How (not) to do Inference

So, we can reconstruct the probability of any particular scenario

But, normally we want to know the probabilities of some nodes given
that we have observed some others

» E.g., what is the probability of a burglar given that the police
were called and the trash can was not knocked over?

By abuse of notation, we write a variable x to represent whatever its
value is, and x*, x™ if its value is known to be T or F (binary case)
Pt pt
Pt pary =8Pl
L, POt
Zd’rP(p ,d,bT, 17, 71)
+ —

2pa, PP*.d.b,1m1)

Downside: exponential number of terms in the “don’t care” variables

» Suppose we observe B

For Poly-Trees, simple propagation
» Reduce c.p. table of its children (D) to o
the B=T or B=F cases
* Propagate o @

* Suppose we observe P

 Use Bayes’ Rule to update D o

* Propagate

» Suppose we observe D

* Do both of the above

» Because everything is singly connected, one
pass updates all probabilities o
* Much more complex if the network is multiply o

connected! Propagation doesn’t work.

Rules and Probabilities

Many have wanted to put a probability on assertions and
on rules, and compute with likelihoods

E.g., Mycin’s certainty factor framework
—A(p=.3) &B (p=.7) ==(p=.8)==> C (p=?)
Problems:

—How to combine uncertainties of preconditions and of
rule

—How to combine evidence from multiple rules

Theorem: There is NO such algebra that works when
rules are considered independently.

Need BN for a consistent model of probabilistic inference

Exact Solution of BN’s

(non-poly-trees)

* P(a,b,c,d,e) = P(@P(b|a)P(c|a)P(d]| b, c)P(e|c)
* What is the probability of a specific state, say A=T, B=F, /

C=T, D=T, E=F?
P(a*,b™,c*,d*,d7) = P@")P(b~|aH)P(c*|aH)P(d* |b™,a*)P(e” | c*)

* What is the probability that E=t given B=t?

P(e*|b*) = P(et,bt)/P(bY)

« Consider the term P(e™, b™)

P(e*,b*) =) P(a.b*,c.d.e*)
a,c,d
=) P(@P(b*|@)P(c|a)P(D| b, c)P(e* | c)

a,c,d

=) P(e*| c)< Y P(@)P(c|a)P(b™ | a)> < Y P(d,b*| c)>
c a d

* 12 instead of 32 multiplications (even in this small example)

Other Exact Methods

v/

» Join-tree: Merge variables into (small!) sets of variables to make graph
into a poly-tree. Most commonly-used; aka Clustering, Junction-tree,
Potential)

« Cutset-conditioning: Instantiate a (small!) set of variables, then solve
each residual problem, and add solutions weighted by probabilities of
the instantiated variables having those values

All these methods are essentially equivalent; with some time-space
tradeoffs.

We don’t want to model high-arity
dependence

< plclay,ay ...) ‘

» too many probabilities needed in conditional probability table
» Can we simplify?

— Noisy or

— noisy and

— noisy max/min
?

Simplifying Conditional Probability
Tables via Noisy-OR

Do we know any structure in the way that Par(x) “cause” x?

* If each destroyer can sink the ship with probability P(s|d;), what is the probability
that the ship will sink if it's attacked by both?
1= P(s|d,dy) = (1 = P(s|d))(1 = P(s|d))(1 = 1)

* For |Par(x)| = n, this requires O(n)parameters, not O(k")

Sampling Methods to
Evaluate Bayes
Networks

Following
Russel & Norvig

THIRD EDIT

o

Artificial
Intelligence

N

e Stuart).Russell
Peter Norvig

PEARSON

Approximate Inference in BN’s

Direct Sampling
Rejection Sampling
Likelihood Weighting
Markov chain Monte Carlo

— Gibbs and other similar sampling
methods

Direct Sampling

function Prior-Sample(bn) returns an event sampled from bn
inputs: bn, a Bayes net specifying the joint distribution P(Xi, ... Xx)
X := an event with n elements
fori=1tondo
xi := a random sample from P(Xi|Par(X;))
return x
s(x1,..., Zp)

N,
lim % = P(a1,..., Tn) P(xy,...,¢om) ~

* From a large number of samples, we can estimate all joint
probabilities

—The probability of an event is the fraction of all complete
events generated by PS that match the partially specified event

» hence we can compute all conditionals, etc.

Rejection Sampling

function Rejection-Sample(X, e, bn, N) returns an estimate of P(X|e)
inputs: bn, a Bayes net
X, the query variable
e, evidence specified as an event
N, the number of samples to be generated
local: K, a vector of counts over values of X, initially 0

forj=1to N do
Y := PriorSample(bn)
if y is consistent with e then
K[v] := K[v]+| where v is the value of X iny
return Normalize(K[X])
 Uses PriorSample to estimate the proportion of times each

value of X appears in samples that are consistent with e

+ But, most samples may be irrelevant to a specific query, so
this is quite inefficient

Likelihood Weighting

* In trying to compute P(X|e), where e is the
evidence (variables with known, observed
values),

— Sample only the variables other than
those in e

— Weight each sample by how well it
predicts e

m

l
Sws(z,e)w(z,e) = HP(zi\Par(Zi))HP(c.;|Par(Ei)]

Likelihood
Weighting _ Pe

function Likelihood-Weighting(X, e, bn, N) returns an estimate of P(X|e)
inputs: bn, a Bayes net
X, the query variable
e, evidence specified as an event
N, the number of samples to be generated
local:WV, a vector of weighted counts over values of X, initially 0
forj=1to N do
Y,w := WeightedSample(bn)
if y is consistent with e then
WI[v] :=W][v]+w where v is the value of X in y
return Normalize(W[X])

l m
Sws(z, e)w(ze) = [[P(z[Par(Z)) [] Plei|Par(E))
i=1 =1

function Weighted-Sample(bn,e) returns an event and a weight
X := an event with n elements; w := |
fori=1tondo
if Xi has a value x; in e
then w := w * P(X; = x; | Par(X))
else x; := a random sample from P(X; | Par(X;))
return X,w

Markov chain \
Monte Carlo)

function MCMC(X, e, bn, N) returns an estimate of P(X|e)
local: K[X], a vector of counts over values of X, initially 0 P }‘
Z, the non-evidence variables in bn (includes X)
X, the current state of the network, initially a copy of e
initialize X with random values for the vars in Z
forj=1to Ndo
for each Zi in Z do
sample the value of Zi in x from P(Zi|mb(Zi)), given the values of mb(Zi) in x
K[v] := K[v]+| where v is the value of X in x
return Normalize(K[X])

* Wander incrementally from the last state sampled, instead of re-generating a
completely new sample

* For every unobserved variable, choose a new value according to its probability given
the values of vars in it Markov blanket (remember, it’s independent of all other vars)

 After each change, tally the sample for its value of X; this will only change
sometimes

+ Problem: “narrow passages”

Learning Probabilistic Models:
A Simple Example

Surprise Candy Corp. makes two flavors of candy: cherry and lime
Both flavors come in the same opaque wrapper

Candy is sold in large bags, which have one of the following
distributions of flavors, but are visually indistinguishable:

hi: 100% cherry

h2: 75% cherry, 25% lime

h3: 50% cherry, 50% lime

h4:25% cherry, 75% lime

hs: 100% lime

Relative prevalence of these types of bags is (.1,.2, .4, .2,.1)

As we eat our way through a bag of candy, predict the flavor of
the next piece; actually a probability distribution.

Bayesian Learning about a Fixed
Simple Set of Hypotheses

Calculate the probability of each hypothesis given the data
P(h;|d) = aP(d|h)P(h;)

* To predict the probability distribution over an unknown
quantity, X,

P(X|d) =) P(X|d, h)P(h;|d) = Y P(X|h)P(h;| d)

If the observations d are independent, then

P|h) =[] P)
J

+ E.g., suppose the first 10 candies we taste are all lime

P(d|h;) = 0.5~ 0.001

Learning Hypotheses
and Predicting from Them

« (a) probabilities of h; after k lime candies; (b) prob. of next lime

s =2 =2 o o
5 & o = o =

I
= i

Posterior probability of hypothesis
Probability that next candy is lime

4 6 8 10 0 2 4 6 8 10
Number of samples in d Number of samples in d

(a) (b)

* MAP prediction: predict just from most probable hypothesis
— After 3 limes, hs is most probable, hence we predict lime
—Even though, by (b), it’s only 80% probable

Observations

- Bayesian approach asks for prior probabilities on hypotheses!
— Natural way to encode bias against complex hypotheses: make
their prior probability very low
« Choosing /i ,p to maximize P(h;|d) = aP(d | h)P(h;)
— is equivalent to minimizing —log P(d | #;) — log P(h;)
— but from our earlier discussion of entropy as a measure of
information, these two terms are
« # of bits needed to describe the data given hypothesis
« # bits needed to specify the hypothesis

— Thus, MAP learning chooses the hypothesis that maximizes
compression of the data; Minimum Description Length principle

+ Assuming uniform priors on hypotheses makes MAP yield /; , the
maximum likelihood hypothesis, which maximizes

P(h;|d) = aP(d]|h)

How to Build a Bayes Network

* Human expertise
» E.g., like building the Acute Renal Failure program, Pathfinder,
Alarm, ...
* Human expertise to determine structure, data to determine
parameters
* Point parameter estimation
* Smoothing
* Useful distributions:
+ Common: Beta (binomial), Dirichlet (multinomial)

* Any of the “exponential family”, e.g., normal, Poisson,
Gamma, etc.

» Automated methods to discover structure and parameters

+ “Best” model is the one that predicts the highest probability for
the data actually observed.

Learning Structure

* In general, we are trying to determine
not only parameters for a known
structure but in fact which structure is
best
— or the probability of each structure,

SO we can average over them to make
a prediction

Structure Learning

» Recall that a Bayes Network is fully specified by
—a DAG G that gives the (in)dependencies among variables
—the collection of parameters 6 that define the conditional probability
tables for each of the P(x; | Par(x;))
P(D|G)P(G)
P(D)
+ We define the Bayesian score as log P(D | G) + log(P(G))
P(D|G) = J P(D| 6, G)P(Hg | G)P(G)db,
e

. Then P(G|D) = « P(D|G)P(G)

* But
—First term: usual marginal likelihood calculation
—Second term: parameter priors
—Third term: “penalty” for complexity of graph
» Define a search problem over all possible graphs & parameters

| 2.000000e+00
2 3.200000e+01
3 3.072000e+03
4 1.572864e+06
5 4.026532e+09
6 4.947802e+13
7 2.837268e+18
8 7.437727e+23
9 8.773900e+29
10 4.600050e+36
11 1.061171e+44
12 1.068209e+52
13 4.659610e+60
14 8.755632e+69
15 7.050966e+79

~ <3%zall possible directed graphs on n vars : : @
—Not all are DAGs

« To get a closer estimate, imagine that we order the variables so that the parents of each
var come before it in the ordering. Then

—there are n!possible ordering, and
—the i-th var can have any of the previous vars as a parent
n
n 2! =nt- 2T = o@! - 27)
i=1
« If we can choose a particular ordering, say based on prior knowledge, then we need
consider “merely” O(2"") models

Searching for Models

* How many possible DAGs are there for n variables?

n
n
. If we restrict [Par(X)| to no more than k, consider < Z <k> models
i=1
« this is actually practical

« Search actions: add, delete, reverse an arc
« Hill-climb on P(D|G) or on P(G|D)
* All “usual” tricks in search: simulated annealing, random restart, ...

Re-Learning the
ALARM Network
from 10,000
Samples

Orriginal Network

(b) Starting Network /// (c)

. Sampled Data
Complete independence\

Learned Network

Caution about Hidden Variables
(Confounders)

» Suppose you are given a dataset containing data on patients’
smoking, diet, exercise, chest pain, fatigue, and shortness of
breath

You would probably learn a model like the one below left

« If you can hypothesize a “hidden” variable (not in the data set),
e.g., heart disease, the learned network might be much
simpler, such as the one below right

» But, there are potentially infinitely many such variables

