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Probabilistic Reasoning
• 1970’s, Dr. William Schwartz posed this problem at a 

medical convention: 
• MIT biological researchers create a new, simple test for 

cancer 
• 5% error rate 
• Give test to a random MIT student, with, alas, a positive 

result 
• What is the probability that student actually has cancer? 

• Common answers: 
• 95%, 50% 

• What is the real answer?

How certain are we after a test?

• How common is cancer? 
• “cancers as those occurring 

between the ages of 20 and 39 
years … 43.3 new cancer cases 
per 100 000 people per year” 

• Thus, prevalence ≈ 0.0433%, 
or 0.000433 

• “Accuracy” refers to either false 
positives or false negatives; 
assume 

• ,
,
,
,

P(t+ |d+) = 0.95
P(t− |d+) = 0.05
P(t− |d−) = 0.95
P(t+ |d−) = 0.05

https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30677-0/fulltext
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• Doctors (and people, in general) are 
lousy at probabilistic reasoning

Science, 1974

2011



Lessons
• Tversky & Kahneman, 1974, “Judgment under Uncertainty: 

Heuristics and Biases” 
• Representativeness 

• “Steve is very shy and withdrawn, invariably 
helpful, but with little interest in people, or in the 
world of reality. A meek and tidy soul, he has a need 
for order and structure, and a passion for detail.” 

• What is his profession?  
farmer, salesman, airline pilot, librarian, or 
physician  

• Availability 
• Anchoring

https://science.sciencemag.org/content/sci/185/4157/1124.full.pdf

Lessons
• Tversky & Kahneman, 1974, “Judgment under Uncertainty: 

Heuristics and Biases” 
• Representativeness 
• Availability — what comes to mind? 

• instances of large classes are usually recalled better and 
faster than instances of less frequent classes 

• “Different lists were presented to different groups of 
subjects. In some of the lists the men were relatively more 
famous than the women, and in other the women were 
relatively more famous than the men. In each of the lists, 
the subjects erroneously judged that the class (sex) that 
had the more famous personalities was the more numerous.  

• Anchoring

Lessons
• Tversky & Kahneman, 1974, “Judgment under Uncertainty: Heuristics and 

Biases” 
• Representativeness 
• Availability  
• Anchoring 

• “subjects were asked to estimate … the percentage of African 
countries in the United Nations.  

• “… a number between 0 and 100 was determined by spinning a 
wheel of fortune in the subject’s presence. The subjects were 
instructed to indicate first whether that number was higher or 
lower than the value of the quantity, and then to estimate the 
quantity.  

• “… these arbitrary numbers had a marked effect on estimates. … 
the median estimates … were 25 and 45 for groups that received 10 
and 65, respectively, as starting points.  Payoffs for accuracy did 
not reduce the anchoring effect.”

Interpreting a Test

Relationship 
between true 
state of the 
world and a 
diagnostic test

Test 
Positive

Test 
Negative

Disease 
Present

True 
Positive

False 
Negative

TP+FN

Disease 
Absent

False 
Positive

True 
Negative

FP+TN

TP+FP FN+TN



Definitions

Sensitivity (true positive rate): TP/(TP+FN) 

 False negative rate: 1-Sensitivity = FN/(TP+FN) 

Specificity (true negative rate): TN/(FP+TN) 

 False positive rate: 1-Specificity = FP/(FP+TN) 

Positive Predictive Value: TP/(TP+FP) 

Negative Predictive Value: TN/(FN+TN)
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Receiver Operator Characteristic 
(ROC) Curve

FPR (1-specificity)

TPR 
(sensitivity)
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What makes a better test?

FPR (1-specificity)

TPR 
(sensitivity)

0
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OK

Thinking about Multiple Variables Discrete Random Variables
• E is a (Boolean) random variable if it denotes an uncertain event 

– You will receive a grade of “A” in this class 
– Global warming will cause Florida to be under water by 2100 
– Your fever is caused by malaria 

• We can extend this to discrete variables with more than two 
possible values 

• Random variables can also be continuous 
– Your first child will be 6’3’’ in adulthood 

• Sources of uncertainty 
– Lack of knowledge (“Is population of Bhutan > 1M?”) 
– Imperfection of models (climate change and Florida) 
– Physics (radioactive decay)



Meaning(s) of Probability
• P(E): fraction of “possible worlds” in which E is true 

– The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally 
possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in 
determining the number of cases favorable to the event whose probability is sought. The ratio of this number to 
that of all the cases possible is the measure of this probability, which is thus simply a fraction whose numerator 
is the number of favorable cases and whose denominator is the number of all the cases possible. —Laplace 

• Interpretations of probability (semester course in philosophy...) 
– Physical/Objective — related to random events 

• Frequentist 
– measure long runs of experimental trials; e.g., coin 

flipping  
• Propensity/Inductive 

– Quantum Mechanics; predicted by models, supported 
by evidence 

– Subjective/Belief

A Review of Probabilities

• Axioms of Probability 

1.  

2.  
 

3.  
• Useful Theorems 

•  

•  

•

0 ≤ P(a) ≤ 1
P(TRUE) = 1
P(FALSE) = 0
P(a) + P(b) − P(a, b) = P(a ∨ b)

P(¬a) = 1 − P(a)
P(a) = P(a, b) + P(a, ¬b)
P(a) + P(b) − P(a ∨ b) = P(a, b)

Universe (1)

P(b)P(a)

Venn 
Diagram

Multi-Valued Random Variables
•  is a random variable with arity  if it can take on exactly one value out of 

 

 if  

 

 

thus,  

 

thus, 

A k
{v1, v2, …, vk}

P(A = vi, A = vj) = 0 i ≠ j
P(A = v1 ∨ A = v2 ∨ … ∨ A = vk) = 1

P(A = v1 ∨ A = v2 ∨ … ∨ A = vi) =
i

∑
j=1

P(A = vj)

k

∑
j=1

P(A = vj) = 1

P(B, A = v1 ∨ A = v2 ∨ … ∨ A = vi) =
i

∑
j=1

P(B, A = vj)

P(B) =
k

∑
j=1

P(B, A = vj)

Joint Distribution with 3 Variables

A B C Prob
0 0 0 0.3
0 0 1 0.05
0 1 0 0.1
0 1 1 0.05
1 0 0 0.05
1 0 1 0.1
1 1 0 0.25
1 1 1 0.1

A

B

0.05

0.05

0.10

0.10

0.10

0.25

0.05

C

0.30



Conditional Probability

•  = fraction of possible worlds in 
which  is true in which  is also true 

•  

• thus, 

P(a |b)
b a

P(a |b) = P(a, b)/p(b)
P(a, b) = P(b)P(a |b)

Universe (1)

p(B)p(A)

Chain Rule

• What about ? 

•  

•  

•  

•  
• Chain rule: nothing depends on anything to its left 

•

P(a, b, c)
y = b, c
P(a, b, c) = P(a, y) = P(a |y)P(y)
= P(a |b, c)P(b, c)
= P(a |b, c)P(b |c)P(c)

P(x1, …, xn) =
1

∏
i=n

P(xi |xi−1, …x1)

Independence 
(and Conditional Independence)

• Definition of independence 

•  iff  is independent of  
• Implies 

•  
• Definition of conditional independence 

•  iff  is independent of  
given  

• Implies 

•

P(a |b) ≡ P(a) a b

P(a, b) = P(a)P(b)

P(a |b, z) ≡ P(a |z) a b
z

P(a, b |z) = P(a |z)P(b |z)

“Naive” Bayes



Bayes’ Rule

•  

• where  

• By conditional independence,  

 

 

• Note:  is the same for all , just to normalize 

P(dj |si) =
P(dj)P(si |dj)

P(si)

P(si) =
n

∑
k=i

P(dk)P(si |dk)

P(dj |s1, …, sk) =
P(dj)P(s1, …, sk |dj)

P(s1, …, sk)

=
P(dj)

P(s1, …, sk) ∏
l

P(sl |dj)

P(s1, …, sk) dj P

Diagnostic Reasoning

• Assume patient has exactly one disease 
• modeled as a multi-valued random variable 
• Example: Acute renal (kidney) failure; i.e., you 

stop peeing 
• Possible diagnoses: infection, blockage, low 

blood flow, … 
• Can have many signs/symptoms 

• Example: pain, blood pressure, blood in urine, 
strep infection, sodium concentration, … 

• Assume that the symptoms are all conditionally 
independent given the disease.

Diagnostic Reasoning with Naive Bayes

• Exploit assumption of conditional 
independence among symptoms 

 

• Sequence of observations of symptoms, , 
each revise the distribution via Bayes’ Rule 

•

P(s1, s2, …, sk |dj) = P(s1 |dj)P(s2 |dj)…P(sk |dj)
si

Pj(di |s1, …, sj) =
Pj−1(di)P(sj |di)

Pj−1(sj)
=

Pj−1(di)P(sj |di)

∑n
i=0 Pj−1(di)P(sj |di)

D1: 0.12
D2: 0.37
...
Dn: 0.03

D1: 0.19
D2: 0.30
...
Dn: 0.01

D1: 0.08
D2: 0.59
...
Dn: 0.05

D1: 0.01
D2: 0.96
...
Dn: 0.00

obs Si obs Sj obs Sk

Data Represented in 
(Conditional) Probability Tables

S1 = Cough P(Cough|Di)
D1 0.001
D2 0.9

...
Dm 0.4

S2 = Fever P(F=none|Di) P(F=mild|Di) P(F=severe|Di)

D1 0.05 0.8 0.15
D2 0.9 0.07 0.03

...
Dm 0.4 0.4 0.2

Prior Probability

D1 0.25

D2 0.4

... ...

Dm 0.05

Priors

Conditionals



How to choose which observation to make next? 
Entropy Redux 

• Compute the expected entropy of  after requesting each 
possible observation  

 

– For each observation, , we can get  possible answers 

• For each answer, we can compute the revised (by Bayes 
rule) posterior probability distribution 

• For that distribution, we compute its entropy 
• The expected entropy weights these entropies by the 

probability that we would get that answer if we asked 
that question, namely 

P(di)

q = arg minjE(H(P(d |sj)))

sj nj

P(sj = vk) =
n

∑
i=1

P(di)P(sj = vk |di)

Acute Renal Failure Program

Gorry, G. A., Kassirer, J. P., Essig, A., & Schwartz, W. B. (1973). Decision analysis as the basis for 
computer-aided management of acute renal failure. The American Journal of Medicine, 55(3), 
473–484. Modern GUI by P. Szolovits.

Odds-Likelihood
• In gambling, “3-to-1” odds means 75% chance of success 

 
• P = 0.5 means O=1 

• Likelihood ratio  
• Odds-likelihood form of Bayes rule 

 
• Log transform to weighted sum 

• basis for many clinical scoring systems 

 
 

O = P/(1 − P) = P/¬P

L(s |d) = P(s |d)/P(s |¬d)

O(d |s1, …, sn) = O(d)L(s1 |d)…L(sn |d)

log[O(d |s1, …, sn)[ = log[O(d)L(s1 |d)…L(sn |d)]
= log[O(d)] + log[O(s1 |d)] + … + log[O(sn |d)]
= W(d) + W(s1 |d) + … + W(sn |d)


