

Vapnik's Idea

 Find the separator between classes that maximizes the margin; i.e., is farthest from the nearest points on opposite sides of the separator

> Boser, B. E., Guyon, I., & Vapnik, V. (1992). A Training Algorithm for Optimal Margin Classifiers. Colt, 144-152. http://doi.org/

Plugging in What We Have Learned

$$L = \frac{1}{2} \left(\sum_{i} \lambda_{i} y_{i} \bar{x}_{i} \right) \cdot \left(\sum_{j} \lambda_{j} y_{j} \bar{x}_{j} \right) - \left(\sum_{i} \lambda_{i} y_{i} \bar{x}_{i} \right) \cdot \left(\sum_{j} \lambda_{j} y_{j} \bar{x}_{j} \right) - \sum_{i} \lambda_{i} y_{i} b + \sum_{i} \lambda_{i}$$
$$= \sum_{i} \lambda_{i} - \frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \bar{x}_{i} \cdot \bar{x}_{j}$$

- Now, "all we need do" is to find the minimum of L wrt λ_i
- Call a numerical analyst! quadratic optimization problem
 Convex, thus no local extrema
- Optimum depends only on dot products between pairs of vectors
- Decision rule becomes:

If
$$\sum_i \lambda_i y_i \, ar{x}_i \cdot ar{u} + b \geq 0$$
 then +, else -

Vapnick's Next Nice Idea

- Not all data are linearly separable!
- Kernel trick handles non-linearity
- Transform data into a higher-dimensional space via $\phi(\bar{x}_i)$
 - instead of dot products $\bar{x}_i \cdot \bar{x}_j$ and $\bar{x}_i \cdot \bar{u}$, define $K(\bar{x}_i, \bar{x}_j) = \phi(\bar{x}_i) \cdot \phi(\bar{x}_j)$
 - We don't need explicit definition of $\phi!$

Common Kernels

- Linear: $\bar{x}_i \cdot \bar{x}_j$
- Polynomial: $(\gamma \bar{x}_i \cdot \bar{x}_j + c)^n$
- Radial Basis: $e^{-\frac{\|\bar{x}_i \bar{x}_j\|^2}{\sigma}}$
- Sigmoid: $tanh(\gamma \bar{x}_i \cdot \bar{x}_j + c)$

• ...

Figure 4: Decision boundaries for maximum margin classifiers with second order polynomial decision rule $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}' + 1)^2$ (left) and an exponential RBF $K(\mathbf{x}, \mathbf{x}') = \exp(-||\mathbf{x} - \mathbf{x}'||/2)$ (middle). The rightmost picture shows the decision boundary of a two layer neural network with two hidden units trained with backpropagation.

Vapnick's Ideas

- Find the separator between classes that maximizes the *margin*; i.e., is farthest from the nearest points on opposite sides of the separator
- *Kernel* trick introduces non-linearity
- Soft margins allow fitting data that are not fully consistent
- Regression estimates *how much* does an item fit a category