

Many Possible Classifiers Fit Data

NN
(Voronoi Diagram)

(ID) Tree

Maximum Margin Classifier

Vapnik's Idea

- Find the separator between classes that maximizes the margin; i.e., is farthest from the nearest points on opposite sides of the separator
Boser, B. E., Guyon, I., \& Vapnik, V.
Boser, B. E., Guyon, I., \& Vapnik
Optimal Margin Classifiers. Colt, 144 152. http://doi.org/

Decision Rule

- $\bar{w} \cdot \bar{u} \geq c$
- or
- $(c=-b)$
- If $\bar{w} \cdot \bar{u}+b \geq 0$ then +
- If $\bar{w} \cdot \bar{u}+b<0$ then -
- But what are w, b?

SVM Constraints

- + points (definitely on + side of margin)
- $\bar{w} \cdot \bar{x}_{+}+b \geq 1$ (\neq if not on the boundary)
- - points (definitely on - side of margin)
- $\bar{w} \cdot \bar{x}_{-}+b \leq-1$
- Introduce new "outcome" variable
- $y_{i}=+1$ if,+-1 if -
- Then, we can simplify both by multiplying constraints by y_{i}
- $y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right) \geq 1$
- or $y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right)-1 \geq 0$
- and $y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right)-1=0$ for \bar{x}_{i} in the "street"

How wide is the "street"?

width $=\left(\bar{x}_{+}-\bar{x}_{-}\right) \cdot \frac{\bar{w}}{\|\bar{w}\|}$
$y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right)-1 \geq 0$
so for $\bar{x}_{+}, y_{i}=+1$, so
$\bar{w} \cdot \bar{x}_{+}+b-1 \geq 0$ or $\bar{w} \cdot \bar{x}_{+}=1-b$
and for $\bar{x}_{-}, y_{i}=-1$, so
$-\bar{w} \cdot \bar{x}_{i}-b-1 \geq 0$ or $-\bar{w} \cdot \bar{x}_{-}=1+b$ so $\bar{w} \cdot \bar{x}_{+}=1-b$ and $-\bar{w} \cdot \bar{x}_{-}=1+b$ by the constraint that points in the street are at 0
$(1-b)+(1+b)=2$
Thus, width $=\frac{2}{\|\bar{w}\|}$

How wide is the "street"?

$$
\begin{aligned}
& \text { width }=\left(\bar{x}_{+}-\bar{x}_{-}\right) \cdot \frac{\bar{w}}{\|\bar{w}\|}=\frac{\bar{w} \cdot \bar{x}_{+}-\bar{w} \cdot x_{-}}{\|\bar{w}\|} \\
& y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right)-1 \geq 0 \\
& \text { so for } \bar{x}_{+}, y_{i}=+1 \text {, so } \\
& \bar{w} \cdot \bar{x}_{+}+b-1 \geq 0 \text { or } \bar{w} \cdot \bar{x}_{+}=1-b \\
& \text { and for } \bar{x}_{-}, y_{i}=-1 \text {, so } \\
& -\bar{w} \cdot \bar{x}_{i}-b-1 \geq 0 \\
& \text { or }-\bar{w} \cdot \bar{x}_{-}=1+b \text { or } \bar{w} \cdot \bar{x}_{+}=-1-b \\
& \text { by the constraint that points in the } \\
& \text { "gutter" are at } 0 \\
& (1-b)-(-1-b)=2 \\
& \text { Thus, width }=\frac{2}{\|\bar{w}\|}
\end{aligned}
$$

Maximize width of street

. width $=\frac{2}{\|\bar{w}\|}$,
. thus want to maximize $\frac{1}{\|\bar{w}\|}$,

- or minimize $\|\bar{w}\|$,
. or minimize $\frac{1}{2}\|\bar{w}\|^{2}$

Plugging in What We Have Learned

$$
\begin{aligned}
L & =\frac{1}{2}\left(\sum_{i} \lambda_{i} i_{i} \bar{x}_{i}\right) \cdot\left(\sum_{j} \lambda_{j}, \bar{x}_{j}\right. \\
& =\left(\sum_{i} \lambda_{i}, \bar{x}_{i}\right) \cdot\left(\sum_{j} \lambda_{j, j} \bar{x}_{j}\right)-\sum_{i} \lambda_{i} y_{i} b+\sum_{i} \lambda_{i} \\
& \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \bar{x}_{i} \cdot \bar{x}_{j}
\end{aligned}
$$

- Now, "all we need do" is to find the minimum of L wrt λ_{i}
- Call a numerical analyst! - quadratic optimization problem - Convex, thus no local extrema
- Optimum depends only on dot products between pairs of vectors
- Decision rule becomes:

If $\sum_{i} \lambda_{i} y_{i} \bar{x}_{i} \cdot \bar{u}+b \geq 0$ then + , else -

LaGrange Multipliers

- Useful to find extremum of a function under constraints
$L=\frac{1}{2}\|\bar{w}\|^{2}-\sum_{i} \lambda_{i}\left[y_{i}\left(\bar{w} \cdot \bar{x}_{i}+b\right)-1\right]$
$\frac{\partial L}{\partial \bar{w}}=\bar{w}-\sum_{i} \lambda_{i} y_{i} \bar{x}_{i}=0$, thus $\bar{w}=\sum_{i} \lambda_{i} y_{i} \bar{x}_{i}$
$\frac{\partial L}{\partial b}=-\sum_{i} \lambda_{i} y_{i}=0$

Vapnick's Next Nice Idea

- Not all data are linearly separable!
- Kernel trick handles non-linearity
- Transform data into a higher-dimensional space via $\phi\left(\bar{x}_{i}\right)$
- instead of dot products $\bar{x}_{i} \cdot \bar{x}_{j}$ and $\bar{x}_{i} \cdot \bar{u}$, define $K\left(\bar{x}_{i}, \bar{x}_{j}\right)=\phi\left(\bar{x}_{i}\right) \cdot \phi\left(\bar{x}_{j}\right)$
- We don't need explicit definition of ϕ !

Common Kernels

- Linear: $\bar{x}_{i} \cdot \bar{x}_{j}$
- Polynomial: $\left(\gamma \bar{x}_{i} \cdot \bar{x}_{j}+c\right)^{n}$
- Radial Basis: $e^{-\frac{\left\|\bar{x}_{i}-\bar{x}_{j}\right\|^{2}}{\sigma}}$
- Sigmoid: $\tanh \left(\gamma \bar{x}_{i} \cdot \bar{x}_{j}+c\right)$
- ...

Early Competition with ANN

	DB1		DB2		
q	error	$<m>$	error	$<m>$	N
1 (linear)	3.2%	36	10.5%	97	256
2	1.5%	44	5.8%	89	$3 \cdot 10^{4}$
3	1.7%	50	5.2%	79	$8 \cdot 10^{7}$
4			4.9%	72	$4 \cdot 10^{9}$
5			5.2%	69	$1 \cdot 10^{12}$

Kernels Can Raise Dimensionality of the Data

Figure 4: Decision boundaries for maximum margin classifiers with second order polynomial decision rule $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=$ $\left(\mathbf{x} \cdot \mathbf{x}^{\prime}+1\right)^{2}(\mathrm{left})$ and an exponential RBF $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| / 2\right)$ (middle). The rightmost picture shows the decision boundary of a two layer neural network with two hidden units trained with backpropagation.

Vapnick's Ideas

- Find the separator between classes that maximizes the margin; i.e., is farthest from the nearest points on opposite sides of the separator
- Kernel trick introduces non-linearity
- Soft margins allow fitting data that are not fully consistent
- Regression estimates how much does an item fit a category

