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Zillow Develops Neural Network to ‘See’ Like a House Hunter

Granite or stainless steel countertops? Zillow's visual recognition effort can recognize the difference

« Data scientists at Zillow Group are developing complex computer programs
that detect specific attributes in photographs of homes, which could aid in
estimating their value.

* Advances in deep learning, big data and cloud computing have converged to
allow the online real estate database firm and others to develop technology
that mimics how the human brain processes visual images--a concept still in
its early stages and once limited to only the largest technology companies.

https://blogs.wsj.com/cio/2016/11/11/zillow-develops-neural-network-to-see-like-a-home-buyer/
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Real Neurons

For models of how real neurons work:
https://en.wikipedia.org/wiki/Biological_neuron_model
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For models of how real neurons work:
https://en.wikipedia.org/wiki/Biological_neuron_model
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McCulloch-Pitts Model

McCulloch, W. S., & Pitts, A logical calculus of the ideas immanent in nervous activity. The Bulletin of
Mathematical Biophysics, 5(4); T15-133. http://doi.org/10.1007/BF02478259
« 1. The activity of the neuron is an "all-or-none" process.

* 2. A certain fixed number of synapses must be excited within the period of latent addition in order
to excite a neuron at any time, and this number is independent of previous activity and position

on the neuron.
« 3. The only significant delay within the nervous system is synaptic delay.
* 4. The activity of any inhibitory synapse absolutely prevents excitation of the neuron at that time.
* 5. The structure of the net does not change with time.
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Perceptron

Frank Rosenblattornell

* McCulloch-Pitts model of neuron
* constantinput x) = — I, thenw, =T
< Y0 = f(w-x))
« fis the threshold function, usually f(z) = (z > 0)
* Learning Method:
« {(x1.d)), ..., (X, dy)} are the training set, each X; an n
dimensional vector, dj the desired (binary) answer
e w(t+1)=w@) +r- (dj — y(0)x;, for all features 0 < i < n
¢ ris the learning rate

* Finds linear separators in 7 dimensional space

Perceptron

* Meant to be hardware for image
recognition, 20x20 photocells

* The New York Times reported the perceptron
to be "the embryo of an electronic computer
that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be
conscious of its existence.”

https://en.wikipedia.org/wiki/Perceptron
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Minsky and Papert, 1969

Perceptrons

* Single-layer perceptrons cannot
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* Blamed for halt to numerical models
of intelligence for decades
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ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton _ mite ~
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high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-

Geoffrey Hinton, We trained a large, deep convolutional neural network to classify the 1.2 million 4 . > : ‘
. ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% - :

The perSIStent and 17.0% which is considerably better than the previogs state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the

ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, i mushroom Madagscal‘ cat
compared to 26.2% achieved by the second-best entry. T agaric squl | monkey
. . grille mushroom grape spider monkey

Neural Information Processing Systems, 2012 plekip Jeliyfungus Sidarbery, titi

beach wagon gill fungus |ffordshire bullterrier indri
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Are Artificial Neurons = Real Neurons?

* Refractory period
* Axonal bifurcation — which way does pulse
propagate?
* Is information in a spike or a spike train?
* How is it encoded?

* Do bundles of nerves convey information
together?

* Growth and pruning of neural connections

Brain as Transducer

Xy 2 d
X2 2 d,
xm zn dn
desired
input output

Measuring Performance
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Improving Performance
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Use Hill-Climbing?
Yes, but along gradient!

Simplest Possible Neural Network
(It’s not even a network!)
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Differentiate! In case you don’t believe me...
Here's a detailed derivation:
oP _ oP 9z dp 1 d 2 d d 1
ow 0z dp ow P=- 5( -2 @’ = E[WJ
a_Pzd_Z =%(l+cf"')_l
0z =—(1+e™)(-e™)
dp 3 e
F p=wx T (e
% oy =2 - A=-op) z=0(p) - e T
—_— [ p— = e =0 . — 0 = + e X +e X
dp Op P op l+e? P P 1 (1+e) -1
=z(1-2) Tl+e l+er

oP
So,— = x(d — 2)z(1 — 2)
ow

o l+e 1
T l4ex l+eX 14e*

1 1
T T+er '(l_l+e*-")
=0(x) - (1 = a(x))

https://math.stackexchange.com/questions/78575/derivative-of-sigmoid-function-sigma-x-fraclle-x




2-layer NN
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2-layer 2-wide NN
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Remember from simple 2-layer NN:
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Lots of Re-Use
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Lots of Re-Use

Revisit the Sigmoid to Fit Probabilities
(Logistic Regression)
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Run once Run 10 times

Réfle .561

Run 100 times

Run Stop Clear

* Interpret (continuous) outputs of many final-
layer neurons as probabilities

p(resulti) =

i




