

Four Color Theorem

- "given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color"
 - ignoring lakes, discontinuous states
- proved in 1976 by Kenneth Appel and Wolfgang Haken
 - using computer programs to show 1,936 cases and a 400+ page proof
- (five colors adequate proven in 1800s)

https://en.wikipedia.org/wiki/Four_color_theorem

How?

- Pick some order of states
- Choose four colors in rotation
 - {Red, Blue, Green, Yellow}
- Depth-first search
 - Main question: When can you tell that a path (partial coloring) is a "loser"?

Problem

- We may create a no-good situation early in the search, but not recognize it until very late in the game
- Consider coloring TX, NM, OK, AK, LA

Vocabulary

- Variable V: something that can have an assignment
- Value x: something that can be assigned
- Domain *D*: a bag of values
- Constraint C: a condition that must be satisfied among variable values

Systematic Idea for Map Coloring: Domain Reduction Algorithm

- For each depth first search assignment
 - For each variable V_i <u>considered</u>
 - For each value x_i in D_i (domain of V_i)
 - For each constraint C between V_i and other variables V_j we use binary constraints

we have

choices here

- If $\nexists x_j \in D_j$ such that $C(x_i, x_j)$ is satisfied
- Then remove x_i from D_i

What Do We "Consider"? (case of strangely arranged states)

Consider	dead ends	extensions	constraints checked
Nothing (wrong answer)	0	48	0
Assignment	4 ⁴⁸ /2	≈∞	0
Neighbors only	406	2113	4667
Propagate through singleton domains	0	75	585
Propagate through reduced domains	0	75	2095
Everything			

What Do We "Consider"?

ordering of states: strange, alphabetic, most, least constrained

Consider	dead ends	extensions	constraints checked	
Assignment	≈∞	≈∞	0	s
	1827	9217		а
	3	101		m
	≈∞	≈∞	0	I
Neighbors only	406	2113	4667	s
	0	82	244	а
	0	86	224	m
	1371	6945	10302	1
Propagate through singleton domains	0	75	585	s
	0	82	492	а
	0	86	299	m
	0	82	492	1
	0	75	2095	s
Propagate through	0	82	2074	а
reduced domains	0	86	1725	m
	0	82	2074	1

Resource Allocation

• Consider an airline with the following proposed schedule, using 4 aircraft:

Many Constraint Satisfaction Problems

SEND MORE

MONEY

A store sells two types of toys, A and B. The store owner pays \$8 and \$14 for each one unit of toy A and B respectively. One unit of toys A yields a profit of \$2 while a unit of toys B yields a profit of \$3. The store owner estimates that no more than 2000 toys will be sold every month and he does not plan to invest more than \$20,000 in inventory of these toys. How many units of each type of toys should be stocked in order to maximize his monthly total profit profit?