6.034
 Constraints and Resource Allocation

Peter Szolovits
ai6034.mit.edu

September 23, 2019

Four Color Theorem

- "given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color"
- ignoring lakes, discontinuous states
- proved in 1976 by Kenneth Appel and Wolfgang Haken
- using computer programs to show 1,936 cases and a 400+ page proof
- (five colors adequate proven in 1800s)

Gold Star Ideas

- Martial Arts Principle
- Use enemy's strength against him
- Any-time Algorithms
-

Four-Colorings

[^0]
How?

- Pick some order of states
- Choose four colors in rotation
- \{Red, Blue, Green, Yellow\}
- Depth-first search
- Main question: When can you tell that a path (partial coloring) is a "loser"?

Simplicia

Problem

- We may create a no-good situation early in the search, but not recognize it until very late in the game
- Consider coloring TX, NM, OK, AK, LA

Vocabulary

- Variable V : something that can have an assignment
- Value x : something that can be assigned
- Domain D : a bag of values
- Constraint C : a condition that must be satisfied among variable values

Systematic Idea for Map Coloring:

Domain Reduction Algorithm

- For each depth first search assignment

we have

- For each variable V_{i} considered choices here
- For each value x_{i} in D_{i} (domain of V_{i})
- For each constraint C between V_{i} and other variables $V_{j}<$ we use binary constraints
- If $\nexists x_{j} \in D_{j}$ such that $C\left(x_{i}, x_{j}\right)$ is satisfied
- Then remove x_{i} from D_{i}

What Do We "Consider"? (case of strangely arranged states)

Consider	dead ends	extensions	constraints checked
Nothing (wrong answer)	0	48	0
Assignment	448/2	$\approx \infty$	0
Neighbors only	406	2113	4667
Propagate through singleton domains	0	75	585
Propagate through reduced domains	0	75	2095
Everything			

What Do We "Consider"?

ordering of states: $\underline{s t r a n g e, ~ a l p h a b e t i c, ~} \underline{\text { most, }} \underline{\underline{l}}$ east constrained

Consider	dead ends	extensions	constraints checked	
Assignment	$\approx \infty$	$\approx \infty$	0	s
	1827	9217	0	a
	3	101	0	m
	$\approx \infty$	$\approx \infty$	0	1
Neighbors only	406	2113	4667	s
	0	82	244	a
	0	86	224	m
	1371	6945	10302	1
Propagate through singleton domains	0	75	585	s
	0	82	492	a
	0	86	299	m
	0	82	492	1
Propagate through reduced domains	0	75	2095	S
	0	82	2074	a
	0	86	1725	m
	0	82	2074	1

Resource Allocation

- Consider an airline with the following proposed schedule, using 4 aircraft:

F1
BOS \Rightarrow JFK
Constraints:

1. No same time
2. No teleportation
3. Min ground time

BOS \Rightarrow JFK

JFK \Rightarrow BOS

F5

JetGreen Airlines

a

Many Constraint Satisfaction Problems

Abstract

SEND A store sells two types of toys, A and B. The store owner pays $\$ 8$ and $\$ 14$ for each one unit of toy A and B respectively. One unit of toys A yields a profit of $\$ 2$ while a unit of toys B yields a profit of $\$ 3$. The store owner estimates that no more than 2000 toys will be sold every month and he does not plan to invest more than $\$ 20,000$ in inventory of these toys. How many units of each type of toys should be stocked in order to maximize his monthly total

 profit profit?
[^0]: https://en.wikipedia.org/wiki/Four_color_theorem

